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Abstract. An analysis of Josephson tunnel junctions based on the RSJ model with non-linear 
damping reveals that crisis is the major mechanism that brings about chaos in the system. 
Details regarding the transition to chaos from zero-voltage steps and non-zero-voltage steps 
are discussed. The effect of a DC bias in the transition scenario as well as the evolution of the 
fractal basin boundaries near the crisis regions are studied. 

1. Introduction 

The non-linear nature of the dynamics underlying Josephson junctions is known to 
be responsible for the noise-rise phenomena or chaotic behaviour observed in them 
(Huberman and Crutchfield 1979, Huberman et al 1980). As such, these junctions have 
been the focus of much activity and research relating to studies in chaos and non-linear 
systems (Gwinn and Westervelt 1986, Cicogna 1987,1988, Jing 1989, Yao et a1 1990). 
Most of the earlier studies were based on the resistively shunted junction (RSJ) model 
with a constant resistance (D’Humieres et a1 1982, Kautz and Monaco 1985, Iansiti et al 
1985). However, of late, a modified model, in which the shunted resistance depends 
inversely on the voltage leading to quadratic damping in the system (called quadratic 
RSJ or QRSJ) has been proposed (Pedersen and Saermark 1973, Bartuccelli et a1 1986). 
This takes into account the non-linear nature of the I-Vcharacteristics, especially in the 
case of tunnel junctions at finite temperatures. In addition to reproducing most of the 
salient features of the RSJ model, the QRSJ has several interesting results to its credit. 

In our recent works, we have pointed out that the quadratic nature of the damping 
can introduce instabilities and transients in the response of the system to RF driving 
(Ambika and Babu Joseph 1990, Ambika et al1991) and have reformulated the problem 
using a Hamiltonian approach (Ambika 1990). The Melnikov method of analysis has 
been found to predict the lowest threshold for chaos in the system (Bartuccelli et a1 1986, 
Yao et a1 1990). The two different types of oscillatory modes as well as the two types of 
chaos exhibited by QRSJ have been discussed by Xiao and Yao (1989). However, the 
details regarding the mechanism of onset of chaos and the dependence of the threshold 
on all the parameters of the problem are still not completely analysed. 

In the present work, we try to fill this lacuna by carrying out a detailed parameter 
space analysis with and without DC bias. Our numerical studies reveal that crisis is the 
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major mechanism of onset of chaos, even though period doubling occurs in a narrow 
region. Forsmallvaluesofthedrivingfrequency,chaosisinduced by areverse boundary 
crisis while on the high-frequency side, at high amplitudes of the driving force, large- 
amplitude oscillatory modes with zero average voltage undergo period doubling fol- 
lowed by an interior crisis. This leads to a chaotic state where the system randomly 
shuttles between different voltage steps that have become unstable. 

In section 2, we present the necessary details regarding the model. Section 3 deals 
with the details of the parameter space analysis both with and without a DC bias. The 
stable periodic modes, which are of course the most relevant ones as far as practical 
circuits with Josephson junctions are concerned, are discussed in section 4. Section 5 
describes how crisis brings about chaos in the present model. Our concluding remarks 
and a comparison of this model with the usual RSI are given in section 6. 

2. The QW model for Josephson tunnel junctions 

The dynamics of an active S-I-S tunnel junction is described by a two-fluid model where 
the current through the junctioncan be written as (Hams 1974), 

i(t) = I, sin B + i2 + i, cos e (2.1) 

and the voltage across the junction is 

u(t) = fie/2e. 

Here Bis thequantumphase difference between the superconductingpair wavefunctions 
on both sides of the junction. The first term on the right-hand side in (2.1) is the super 
current due to the tunnelling of the pairs while the second term is the contribution from 
quasiparticles. The cos fl term is the phase-dependent part of the quasiparticle current, 
which has no effect on the RF induced steps or the I-V characteristics and as such will 
not be further considered in this paper. 

A simple model for the junction is the Josephson element shunted by a capacitance 
C and resistance R. When driven by a constant DC bias iDc and a periodic current of 
frequency w the equation for the junction is (Pedersen and Saermark 1973) 

C(du/df) + u/R + il sin 0 = iDc + if sin wf .  (2.3) 

R = fiy/2eu (2.4) 

I = iDc/il A = ir/il  k = (Yq-1. (2.5) 

w j  = (2eil/fiq’” (2.6) 

8 + k lb lb  + sin B = I + A  sin wt. (2.7) 

The quasiparticle current i, = u/R .  Further choosing the resistance R to depend on U as 

where y is a constant, we define the following dimensionless parameters: 

The time f is redefined as w,l where wi is the Josephson plasma frequency given by 

Then (2.3) together with (2.2) gives us 

Written this way, this equation can model interesting physical situations such as a 
perturbed pendulum with quadratic damping. Throughout the paper we invoke the 
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pendulum analogy quite often, to clarify the nature of the different possible modes of 
the system. When A = 0, the DC characteristics of the junction consist of a zero-voltage 
branch corresponding to the oscillatory modes of the pendulum and a non-zero-voltage 
branch, arising from the running or rotational modes. When A # 0, we get a series of 
steps where (U) islocked to the rational multiples of the driving frequency w. The chaotic 
states are due to the random jumps between different steps and this intermittent type of 
chaos is the one that is usually observed in experiments. 

3. Parameter space analysis 

An overall picture of the occurrence of the periodic and chaotic states in the system can 
be understood from a parameter space plot of the problem. The parameter space in this 
context is (k, I, A ,  w ) .  For the time being we consider the zero-bias situation, the effect 
of Ibeing dealt with separately. Moreover, we consider a case of low damping and keep 
k = 0.1 throughout. Thus the parameter space reduces to the plane (A, w). For our 
numerical analysis, (2.7) is considered as a three-dimensional dissipative system in (0, 
8, wt). For each set of values (A, w), (2.7) is integrated using a fourth-order Runge- 
Kutta algorithm and the asymptotic states are identified by plotting the phase portraits 
in the (8,8) plane and the PoincarC maps in sections at a specified phase of the driving 
term. The power spectrum computed using the fast Fourier transform (m) (Higgins 
1976) is also employed to get an idea about the number of frequencies involved and to 
identify the truly chaotic states. For one value of 0, A is slowly varied and a bifurcation 
diagram is drawn by plotting 8 (=Zeo/h) values, sampled at frequency w, against A. 
The first thousand values are discarded as transient and next thousand are plotted. 'A 
uniform line in this diagram would correspond to a window of stable periodic resonance 
mode while scattered random points would imply chaotic regions. The period doubling 
bifurcations, if any ,  can also be clearly seen. Observing the phase portraits and the 
Poincark maps side by side, we lb. the details of the dynamics of the system in the 
parameter space. This is repeated changing w by 0.05. Thus the parameter space plots 
given in figure 1 are drawn. 

In figure 1, the region below the curves C ,  and C2 leads to asymptotically stable 
periodic modes with (e) = 0. These symmetric modes form the zero-voltage branch of 
the junction. Above these curves, however, irregular and random behaviour can be 
seen. The transition curves are drawn by calculating the Lyapunov characteristic 
exponent (LCE) which gives the average rate of divergence or convergence of two initially 
close trajectories. In the periodic region, the LCE is negative, while in the chaotic region 
at least one LCE is greater than zero. So we compute the maximum LCE throughout the 
(A, w )  plane in steps of (0.05,0.05), following the conventional procedure (Wolf etol 
1985). Here the first 2000 values are discarded and LCE is calculated using the next 2000 
values. 

The period doubling region occurs only on the high-frequency side (marked by 
stripes in figure 1). The reason for this will be made clear in section 4. The dotted region 
corresponds to states of mild chaos associated with rotational or non-zero-voltage 
branches that are of broken symmetry. In this region, even when the voltage is locked 
to a harmonic of w ,  the LCE value is positive and hence is called a state of locked chaos. 
Similar behaviour has been observed experimentally on junctions of the Pb-Te-Pb type 
(Octavio and Nasser 1984) where the equivalent noise temperature is found to rise even 
before the voltage unlocks. States of locked and unlocked chaos have been mentioned 
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Figure 1. Parameter space plot of the ORSJ model with k = 0.1. The curves C, and C2 
represent transition from periodic to chaotic regions. The period doubling scenario occurs 
in the striped regions while the dotted regions show locked chaos in the non-zero-voltage 
branches: (a)withnoDcbiasand(b)withI= 0.2V. 

Frequency Frequency 

Figure2. Power spectra of the states with log (power) plotted along they axis and frequency 
along the x axis. Here io = 0.55 and k = 0.1: ( a )  locked chaos at A = 0.7 and ( b )  unlocked 
chaosatA = 0.825. 

earlier in the work of Xiao and Yao (1989). Our results also indicate that in the state of 
locked chaos the LCE value is small (about but positive and the FFT shows, in 
addition to the fundamental, a few peaks that correspond to the harmonics of w and 
their subharmonics. However in the unlocked chaotic regions, the LCE is large and 
positive and the FFT displays a large number of peaks together with broad brands. These 
are shown in figure 2. 



Figure 3. Stable periodic limit cycles LCI and LCZ of 
thezero-voltagetypewithw = 0 .6 ,k=  0 . 1 , I  =Oand 
A = 0.3.Theinitialvaluechosenfor~ciis(O, ])while 

The pattern of behaviour is significantly altered by the application of a small DC bias, 
say Z = 0.2 V (figure l (b)) .  This, first of all, introduces a symmetry breaking in the 
system which makes period doubling occur earlier. The transition to chaos for low w 
values is not much affected, the only change being that chaos setsin for lower values of 
A. The states with locked chaos also occur earlier. On the high-frequency side, the 
period doubling region is broader and is brought down to much lower A values. 

4. Stable periodic modes 

Considering the damping and the driving terms as perturbations, we can see that the 
unperturbed system with Z = 0 corresponds to a simple pendulum and the possible 
dynamic states in the phase space (0, e )  are the oscillatory modes and rotational modes 
with the separatrix orbit in between. With damping, the stable and unstable parts of the 
separatrix separate out and the asymptotic states or attractors are stable fixed points or 
centres at (2m, 0) and unstable fixed points or saddles at ((2n + l)z, 0) where n = 0, 
21, f2, +3 . . . . The centres and saddles thus alternate along the 0 axis and correspond 
to the potential minima and maxima. For small values of A and CO, the system describes 
simple limit-cycle-like orbits inside the wells. 
On the low-frequency side, the asymptotic state continues to be a small-amplitude 

motion of the oscillatory type referred to as Lci ,  until transition to chaos takes place. As 
w increases, the system is able to support another large-amplitude resonance mode, ~cz. 
While LCI is stable on the left-hand side of the curve C1, L C ~  is stable on the right-hand 
side of the curve C2 (figure l (a) ) .  There is a small triangular region where LCI and ~a 
coexist with hysteresis. Figure 3 shows these two modes for the same values of A and w 
but for different initial conditions. The obvious difference between them is that Lc1 is a 
small-amplitude oscillation deep inside the potential well while LCZ is a large-amplitude 
oscillation near the top of the well. They have different basins of attraction, that is the 
setsofinitialpoints that evolveintom andLaaredifferent, witha boundaryseparating 
them. This can be seen clearly in figure 4. Moreover, they follow two different routes to 
chaos as A increases. While LCZ prefers the period doubling route, LCI disappears via an 
entirelydifferent mechanism. Thiswill bemademoreexplicit insection5. Inthiscontext, 
we would like to add that such modes have been reported in some earlier work in the 



4834 G Ambika 

Figom 4. Evolution of basin boundaries corre- 
spondingtothe twomodes LCI a n d u z a t  o = 0.6and 
k = 0.1. The region of phase space considered is 0 to 
3 along the 8 axis and -3 to 3 in the B direction. 
Startingfrom theupperleft-hand figure, theA values 
in the clockwise direction are 0,3,0.35,0.406,0.45. 
Here the dotted areas correspond to  the basin of LCI 
while the broken-hashed regions represent that of 
Lei. The hashed regions end up in rotational modes 
while the dark region marks p i n t s  that lead to limit 
cycles in other potential wells. The white dot in the 
dotted region refers to the Poincar.4 map of KI. 

usual RSJ model (Beasley and Hubeman 1982) even though details regarding the 
transition to chaos are not available. 

However, regular periodic states corresponding to non-zero-voltage steps, with the 
voltage locked to a multiple of w do not appear to be asymptotically stable states in our 
system. In the RSI model with linear damping, rotational modes with phase locking have 
been observed (D’Humieres et a1 1982). When the damping is quadratic in 8, the 
dependence of the damping factor on 8 introduces a sort of feedback in the system, 
since., at each stage, damping varies with 8. So rotational modes with large 8 values are 
soon damped to oscillatory modes or end up in states with a certain randomness that do 
not settle down to exactly periodic locked states. 

5. Crisis and chaos 

As has been mentioned earlier, the transition to chaos in the parameter space is fixed by 
studyingthe LCE values and the bifurcation diagrams. We find that, on the low-frequency 
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side, say up to w = 0.65, chaos sets in through L a .  Nevertheless, LCI does not show any 
tendency to period-double, even in the presence of a DC bias. The disappearance of LCI 
isviaareverse-tangent bifurcation or saddle-node bifurcation where it meetsits unstable 
counterpart, bringing about mutual destruction (Xiao and Yao 1989). Just before this 
happens, theunstablecyclecancollide with the boundary ofthechaoticattractorexisting 
for higher values of A. This will result in the sudden disappearance of chaos. leaving 
only chaotic transients. Although we have no direct numerical evidence for this collision 
at this stage, to the extent that we have been able to establish, we can say that the 
transition is very sudden, the L ~ E  becoming positive within a very small change in 
A = lo-‘. By studying the transients very close to the transition value, the course of 
events isobviously the periodic limit cycle - chaotic transients- chaos. Such a scenario 
has been named a reverse boundary crisis in the literature (Grebogi ef al 1983). We 
illustrate this in figure 5(u) for w = 0.3 where A, = 1.017. The average lifetime of the 
transients (r)  should follow a scaling law In - uel”, where A, is the transition value. 
Detailed computations to evaluate this scale factor v for the present problem are 
underway and the results will be made available in a subsequent paper. 

For w values lying in the triangular region, we find that, before LCI disappears, LQ 
isproducedbya saddle-node bifurcation. This undergoes perioddoubling asA increases, 
resulting in a chaotic attractor, which disappears via a boundary crisis. The numerical 
study of the evolution of the basin boundaries near the crisis region is shown in figure 4. 
Here in the first part with A = 0.3, Lci and LQ are stable and their boundaries are shown 
separately. As A increases, the basin of LQ changes shape drastically and disappears 
beyond the crisis point. Lci still continues as the asymptotic state of the system until 
chaos sets in. AsA increases further, rotational modes with locked chaos are produced. 
They undergo period doubling followed by an interior crisis, where the unstable modes 
collide with the period-doubled attractors inside their basins, resulting in a sudden 
expansion of the attractor size. As this happens, there is a merging of the different 
basins. The evolution of the boundaries during an interior crisis has been studied in 
detail earlier in related systems (Gwinn and Westervelt 1985) and hence is not included 
here. The transition scenario for w = 0.55 clearly illustrates this sequence of events in 
figure 5(b). 

For w > 0.65, chaos sets in through LQ and hence the mechanism is the period 
doubling cascade. For higher values of A,  rotational modes undergo period doubling 
and interior crisis to reach chaos. The LCE values in this region vary gradually with A 
and become positive even before the LQ period doubles. This is because of aheteroclinic 
tangle formed by the unstable and stable branches of the different separatrices. Two 
initial conditions, differing by very small values, end up asymptotically in widely sep- 
aratedpotential wells. This would mean that the basin boundaries, separating the states 
inside different wells, have a fractal nature and even though the system is asymptotically 
attracted to a periodic state, there is an uncertainty regarding the final state. This is a 
feature common to non-linear systems with multiple attractors (Li and Moon 1990, 
Thompson and Soliman 1991) and though the situation is not exactly chaotic in the strict 
sense of the word, it certainly heralds chaos in the system. In addition, this region is 
most affected by the presence of a DC bias in the junction. This should be clear by 
comparing the bifurcation diagrams given in figure 6. 

6. Concluding remarks 

In this work, an exposition of the various possible dynamical states Of QRSJ is made, with 
special emphasis on the pattern of behaviour during onset of chaos. It is found that on 
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the low-frequency side, chaos is brought in by a reverse boundary crisis while on the 
high-frequency side, it is due to interior crisis preceded by a period-doubling scenario. 

The present model set against the usual RSJ brings out the following interesting 
points. i n  the RSJ model, for low values of o, chaos qccurs later compared to QRSJ. 
Moreover, the chaotic state runs over larger values of 8. Phase-locked running modes 
have been observed in RSJ, but in our model such locked states have positive LIE 
values. However, direct experimental measurements under identical conditions are not 
available at present and therefore it is difficult to comment on the superiority of either 
model in explaining experimental observations. One obvious fact is of course that QRSI 
takes into account the non-linear nature of the I-V curves and as such is a better fit for 
the actual junction. However, a striking discrepancy between experimental observations 
and the numerical results is that so far chaos has been observed experimentally only in 
the presence of DC bias (Octavio 1990). Our model also does not explain this but we find 
that the periodic modes continue to be stable even for large values of A and are quite 
reluctant to period-double when there is no DC bias. The DC bias makes period doubling 
occur much earlier and chaos sets in for much smaller values of A. 
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